Multivariate survival analysis with positive stable frailties.
نویسندگان
چکیده
In this paper, we describe Bayesian modeling of dependent multivariate survival data using positive stable frailty distributions. A flexible baseline hazard formulation using a piecewise exponential model with a correlated prior process is used. The estimation of the stable law parameter together with the parameters of the (conditional) proportional hazards model is facilitated by a modified Gibbs sampling procedure. The methodology is illustrated on kidney infection data (McGilchrist and Aisbett, 1991).
منابع مشابه
Using frailties in the accelerated failure time model.
The accelerated failure time (AFT) model is an important alternative to the Cox proportional hazards model (PHM) in survival analysis. For multivariate failure time data we propose to use frailties to explicitly account for possible correlations (and heterogeneity) among failure times. An EM-like algorithm analogous to that in the frailty model for the Cox model is adapted. Through simulation i...
متن کاملBayesian semiparametric frailty selection in multivariate event time data.
Biomedical studies often collect multivariate event time data from multiple clusters (either subjects or groups) within each of which event times for individuals are correlated and the correlation may vary in different classes. In such survival analyses, heterogeneity among clusters for shared and specific classes can be accommodated by incorporating parametric frailty terms into the model. In ...
متن کاملA marginal cure rate proportional hazards model for spatial survival data.
Dental studies often produce spatially referenced multivariate time-to-event data, such as the time until tooth loss due to periodontal disease. These data are used to identify risk factors that are associated with tooth loss, and to predict outcomes for an individual patient.The rate of spatial referencing can vary with various tooth locations. In addition, these event time data are heavily ce...
متن کاملHierarchical Multivariate CAR Models for Spatio-Temporally Correlated Survival Data
Survival models have a long history in the biomedical and biostatistical literature, and are enormously popular in the analysis of time-to-event data. Very often these data will be grouped into strata, such as clinical sites, geographic regions, and so on. Such data will often be available over multiple time periods, and for multiple diseases. In this paper, we consider hierarchical spatial pro...
متن کاملA SAS MACRO FOR THE POSITIVE STABLE FRAILTY MODEL Youyi Shu and John P. Klein, Medical College of Wisconsin
A SAS macro to extend the Cox proportional hazards regression model to allow for positive stable frailties is presented. This macro computes, using a modi ed EM algorithm, estimates of the model parameters and their respective standard errors. The likelihood ratio test of the independence assumption is also provided. An example data set is used to illustrate the macro.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 55 2 شماره
صفحات -
تاریخ انتشار 1999